Gradient Boosted Trees at 20:
A View from Industry

Jan Pedersen
Distinguished Scientist
Uber Technologies
Outline

- AI Revolution
- A Pioneer
- Quick View of Gradient Boosting
- Application to Ranking
- Twenty Years Later
AI Revolution
Why the Excitement?

- Breakthrough in Traditional AI Tasks
 - Data-intensive methods
 - Massive compute
 - Improved algorithms

- Phase Transition
 - From curiosity to useable technology
 - Application explosion

- Many Tasks Remain Inaccessible
 - Planning and control
 - Fully autonomous agents
Origins

- Earlier Attempts were Engineered
 - Hand-tuned
 - Not robust or scaleable
- Automation is Critical
 - Not just imitation
 - but replacement
- Example: Universal Function Approximation
 - Wide range of application
 - Simplified training
 - E.g. Gradient Boosted Trees
A Pioneer
● Greedy Function Approximation: A Gradient Boosting Machine; Feb 1999a
● Stochastic Gradient Boosting; March 1999b

Source: A Conversation with Jerry Friedman; N.I. Fisher, Statistical Science Vol. 30 No. 2; 2015
Couldn’t Resist

From the PRIM-9 Video
A Quick Review
Greedy Function Approximation

- Minimize Generalization Error
 - Arbitrary differentiable loss
 - Typically squared error

- For an Ensemble of Weak Learners
 - Typically regression trees

- Via Gradient Descent
 - In function space
 - Fit a weak learner to pseudo residuals

\[
\hat{F} = \arg \min_F \mathbb{E}_{x,y} [L(y, F(x))].
\]

\[
\hat{F}(x) = \sum_{i=1}^{M} \gamma_i h_i(x) + \text{const}.
\]

\[
F_m(x) = F_{m-1}(x) - \gamma_m \nabla_{F_{m-1}} L(y_i, F_{m-1}(x_i)),
\]

\[
\gamma_m = \arg \min_{\gamma} \sum_{i=1}^{n} L(y_i, F_{m-1}(x_i)) - \gamma \nabla_{F_{m-1}} L(y_i, F_{m-1}(x_i)).
\]
Properties

- **Universal Function Approximation**
 - Given enough trees
 - In practice, capacity is limited
- **Resistant to Overfitting**
 - Regularization via learning rate
 - Stochastic Gradient Descent
 - Out-of-Bag Error
- **Variable Importance**
 - Understandability
- **High Quality Open-Source Implementations**
- **Requires Feature Engineering and Tuning**
 - Interactions
 - Hyper parameters
Application to Ranking
Ad Hoc Retrieval

- Return Documents Matching a Query
 - Ranked in some order
 - Later in “relevance” order
- From Boolean to Keyword Search
 - Gerard Salton (Cornell)
 - Bag-of-Words model
 - Cosine scoring
- Judged Relevance
 - Expert editors
 - Graded relevance scores
 - nDCG

\[
DCG_p = \sum_{i=1}^{p} \frac{2^{rel_i} - 1}{\log_2(i + 1)}
\]
Ranking as Regression Problem

- Trec Conference Drove Innovation
 - Standard task and training Set
- Hand-Crafted Ranking Functions
 - Inspired by analysis
 - BM25 (S. Robertson 1998) was best-of-breed
- Early work on Ranking as Regression
 - W. Cooper, A. Chen and F. Gey
 Experiments in the Probabilistic Retrieval of Full Text Documents; 1997
 - Query/Document features
Alta Vista: The First Machine Learned Ranking Function

- Extreme competition for search share
- Incumbent ranking technology failed to improve
 - Open-loop optimization
- Top-down decision to switch technologies
- Gradient Boosted Trees as learning method
- Launched in June 2003
Yahoo and Bing

- **ML as competitive advantage**
 - Factors feature development from optimization
 - Supports distributed innovation
 - Continuous improvement cycle

- **Online code is automatically generated**
 - Compiled from tree representation
 - Efficiency is a concern

- **Independently developed at MSR**
 - Ranknet and LambdaRank (Burges 2005)
 - Ultimately adopted Gradient Boosted Trees
Twenty Years Later
An Indispensable Technology

- Default Learning Method
 - Embedded in many industrial ML platforms
 - E.g. Bing Aether, Uber Michelangelo

- Ubiquitous Deployment
 - Bing: entire search stack
 - Twitter: ads, news feed
 - eBay: search ranking
 - Uber: eta prediction, risk, safety